1KITE: Orthoptera

1KITE Orthoptera


Song*, S., O. Béthoux, S. Shin, A. Donath, H. Letsch, S. Liu, D. McKenna, G. Meng, K. Meusemann, B. Misof, L. Podsiadlowski, X. Zhou, B. Wipfler, and S. Simon*. 2020. Phylogenomic analysis sheds light on the evolutionary pathways towards acoustic communication in Orthoptera. Nature Communications 11: 4939.





https://www.nature.com/articles/s41467-020-18739-4


Abstract: Acoustic communication is enabled by the evolution of specialised hearing and sound pro- ducing organs. In this study, we performed a large-scale macroevolutionary study to understand how both hearing and sound production evolved and affected diversification in the insect order Orthoptera, which includes many familiar singing insects, such as crickets, katydids, and grasshoppers. Using phylogenomic data, we firmly establish phylogenetic relationships among the major lineages and divergence time estimates within Orthoptera, as well as the lineage-specific and dynamic patterns of evolution for hearing and sound pro- ducing organs. In the suborder Ensifera, we infer that forewing-based stridulation and tibial tympanal ears co-evolved, but in the suborder Caelifera, abdominal tympanal ears first evolved in a non-sexual context, and later co-opted for sexual signalling when sound pro- ducing organs evolved. However, we find little evidence that the evolution of hearing and sound producing organs increased diversification rates in those lineages with known acoustic communication.

Featured Posts
Recent Posts
Archive
Search By Tags
Follow Us
  • Facebook Basic Square
  • Twitter Basic Square
  • Google+ Social Icon

© 2020 by Xin Zhou

The Zhou lab, China Agricultural University