Phylogeny of chalcidoid wasps

We used a phylogenomic approach to inferring chalcidoid wasp phylogenetic relationships and provided the first molecular clock-based estimation of deep Chalcidoidea divergence times. The phylogeny was then followed in tracing evolutionary roots of host switches, jumping ability, and associations with figs.

Peters*, R. S., O. Niehuis, S. Gunkel, M. Bläser, C. Mayer, L. Podsiadlowski, A. Kozlov, A. Donath, K. Meusemann, S. van Noort, S. Liu, X. Zhou, B. Misof, J. Heraty, and L. Krogmann*. 2017. Transcriptome sequence-based phylogeny of chalcidoid wasps (Hymenoptera: Chalcidoidea) reveals a history of rapid radiations, convergence, and evolutionary success. Molecular Phylogenetics and Evolution 120: 286-296. PDF

Abstract: Chalcidoidea are a megadiverse group of mostly parasitoid wasps of major ecological and economical importance that are omnipresent in almost all extant terrestrial habitats. The timing and pattern of chalcidoid diversification is so far poorly understood and has left many important questions on the evolutionary history of Chalcidoidea unanswered. In this study, we infer the early divergence events within Chalcidoidea and address the question of whether or not ancestral chalcidoids were small egg-parasitoids. We also trace the evolution of some key traits: jumping ability, development of enlarged hind femora, and associations with figs. Our phylogenetic inference is based on the analysis of 3,239 single-copy genes across 48 chalcidoid wasps and outgroups representatives. We applied an innovative a posteriori evaluation approach to molecular clock-dating based on nine carefully validated fossils, resulting in the first molecular clock-based estimation of deep Chalcidoidea divergence times. Our results suggest a late Jurassic origin of Chalcidoidea, with a first divergence of morphologically and biologically distinct groups in the early to mid Cretaceous, between 129 and 81 million years ago (mya). Diversification of most extant lineages happened rapidly after the Cretaceous in the early Paleogene, between 75 and 53 mya. The inferred Chalcidoidea tree suggests a transition from ancestral minute egg parasitoids to larger-bodied parasitoids of other host stages during the early history of chalcidoid evolution. The ability to jump evolved independently at least three times, namely in Eupelmidae, Encyrtidae, and Tanaostigmatidae. Furthermore, the large-bodied strongly sclerotized species with enlarged hind femora in Chalcididae and Leucospidae are not closely related. Finally, the close association of some chalcidoid wasps with figs, either as pollinators, or as inquilines/gallers or as parasitoids, likely evolved at least twice independently: in the Eocene, giving rise to fig pollinators, and in the Oligocene or Miocene, resulting in non-pollinating fig-wasps, including gallers and parasitoids. The origins of very speciose lineages (e.g., Mymaridae, Eulophidae, Pteromalinae) are evenly spread across the period of chalcidoid evolution from early Cretaceous to the late Eocene. Several shifts in biology and morphology (e.g., in host exploitation, body shape and size, life history), each followed by rapid radiations, have likely enabled the evolutionary success of Chalcidoidea.

Featured Posts
Recent Posts
Search By Tags
Follow Us
  • Facebook Basic Square
  • Twitter Basic Square
  • Google+ Social Icon

© 2020 by Xin Zhou

The Zhou lab, China Agricultural University